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ABSTRACT 
This paper designs a Scenario analysis approach to determine the joint production policy for two 
products under possible substitution. The Scenario analysis is designed to improve decision-making by 
considering possible outcomes and their implications. The traditional multi-product production models 
assume that there is no possible substitution between products. However, in real-world cases, there are 
many substitutable products where substitution may occur in the event of a product stock-out. The 
proposed model optimizes production quantities for two products under substitution with the aim of 
minimizing the total cost of the inventory system, including setup and holding costs, subject to a 
resource constraint. To analyze the problem, four special Scenarios are derived and discussed in 
detail. Furthermore, the total cost functions are derived for each Scenario separately, and then a 
solution procedure is suggested based on the Scenarios developed. The numerical examples are 
implemented, and the results are discussed in detail. Finally, sensitivity analysis is performed to get 
more insights. It is observed that the presented model is highly sensitive to the demand rate of 
products. 
 
KEYWORDS: Scenario analysis; Production-inventory systems; Substitutable products; Joint production 
policy. 

1. Introduction1 
In real-world industrial systems, the appropriate 
design and control of inventories have a great 
role and impact on performance. The raw 
materials, goods in processes, spare parts, and 
finished items are various kinds of inventory. The 
important decision in an inventory system is to 
determine how much and when should order [1]. 
If inventories are not controlled appropriately, 
they might incur costly outcomes. Therefore, 
designing an appropriate inventory system is a 
vital task to create an acceptable performance. 
The numerous models of inventory systems have 
been presented in the literature yet. Among them, 
the economic order quantity (EOQ) is the first 
and basic one [2]. In traditional EOQ, the demand 
is deterministic and constant over the planning 
horizon, and the order is received 
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instantaneously. The model aims to delineate the 
optimal order quantity for items so as to 
minimize the total costs, including holding and 
ordering costs. Since the holding and ordering 
costs behave inversely in basic EOQ, the total 
cost function is convex, and then an intermediate 
amount of order quantity is optimal. Many 
versions of the inventory model have been 
proposed by relaxing some basic assumptions or 
adding new ones into the traditional EOQ model. 
The economic production quantity (EPQ) is one 
of the earlier extensions of EOQ [3]. In basic 
EOQ, it is assumed that the order quantity is 
received at the moment with an infinite rate, 
while, in EPQ, orders are received with a finite 
rate over time. The EPQ model, also known as 
the economic manufacturing quantity (EMQ), 
aims to determine the optimal production 
quantity for a manufacturing facility. The 
objective of the EPQ is to minimize the total 
inventory and production costs.  
As a recent research, Pan, et al. [4] proposed an 
EPQ model integrated with the process control 
and maintenance problems. Wee, et al. [5] 
considered an EPQ model with a renewal reward 
procedure for imperfect items. Moreover, Dash, 
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et al. [6] designed an EPQ for deteriorating 
inventories with time value of money and price-
dependent demand. An imperfect EPQ problem 
was suggested by Karimi-Nasab and Sabri-
Laghaie [7] with reworkable and non-reworkable 
items and random defectives. Nasr, et al. [8] 
utilized differential equations for an EPQ model 
with deteriorating raw materials. In addition, 
Pacheco-Velázquez and Cárdenas-Barrón [9] 
considered an EPQ problem by considering the 
inventory costs of the raw materials and finished 
items separately. Additionally, Jawad, et al. [10] 
analyzed a sustainable EPQ using the laws of 
thermodynamics. In another work, a multi-item 
EPQ with fuzzy demand was proposed by 
Sadeghi, et al. [11]. Moreover, Al-Salamah [12] 
suggested an EPQ model with the quality control 
process where the items are subjected to 
destructive or non-destructive inspection. 
Mokhtari, et al. [13] proposed an EPQ model for 
perishable products with shortage and stock-
dependent demand. Karmakar, et al. [14] 
proposed a pollution-sensitive fuzzy EPQ model 
with a time-dependent rate of production. 
Taleizadeh, et al. [15] proposed sustainable 
production-inventory models under different 
shortage scenarios. They utilized a direct 
accounting approach to formulate carbon 
emission. Mokhtari and Rezvan [16] studied an 
EPQ model for multi-buyers and multi-products 
under a partial backordering shortage. Multi-
product constrained EPQ models for imperfect 
quality items with rework policy were developed 
by Mokhtari, et al. [1]. They solved these models 
using Lagrangian relaxation method. Fallahi, et 
al. [17] designed an EPQ model for defective 
items under a multiple shipments policy. This 
model considered the carbon emission of the 
system under direct accounting policy. Moreover, 
Asadkhani, et al. [18] discussed the role of 
learning in inspection errors for EPQ models with 
different types of imperfect items. In addition, we 
can find integrated production-inventory and 
supply chain models as extensions of EPQ in 
literature [19-22]. 
The substitution usually occurs for inherently 
similar products, such as different coffee, 
chocolate, or pastry brands. When a company 
supplies two substitutable products, customers of 
one product may switch to another when the first 
product is unavailable and vice versa. Therefore, 

the effect of demand substitution on the multi-
products inventory control problems is an 
important issue. However, the academic literature 
has treated little attention to studying the classical 
inventory models like EOQ and EPQ under 
substitution. To the best of our knowledge, the 
notable researches on substitutability are 
presented under EOQ framework, and there is no 
academic research for substitution under EPQ 
setting. Drezner, et al. [23] derived the joint 
replenishment policy for two substitutable 
products under EOQ model with one-to-one and 
full substitution. Gurnani and Drezner [24] 
extended the research presented by Drezner, et al. 
[23] to multiple products, and they considered 
one-way substitution where customers are 
allowed to switch to higher quality products. 
Shin, et al. [25] provided a review of the 
literature on substitutable products planning. In 
addition, Salameh, et al. [26] extended the work 
of Drezner, et al. [23] for partial substitution, 
where just a fraction of customers are willing to 
substitute. In addition, Krommyda, et al. [27] 
studied two substitutable products under a two-
way setting, partial substitution and stock-
dependent demand on the EOQ structure. 
Maddah, et al. [28] presented an EOQ model for 
multiple substitutable products under partial 
substitution. Giri, et al. [29] proposed a 
substitution balancing strategy for inventory 
systems of substitutable items. In this work, the 
demand was considered as a function of time. 
Mokhtari [30] studied a new inventory model for 
complementary substitutable products under a 
two-way substitution policy. Edalatpour and Al-
e-Hashem [31] extended [30] work by 
considering non-linear holding cost and pricing 
strategy in the inventory model. Chen, et al. [32] 
determined the optimal lot-sizing strategy for an 
inventory system of imperfect substitutable items 
with real-world constraints. Shah, et al. [33] 
addressed the inventory problem of substitutable 
products with time-dependent demand. The goal 
of model was to maximize the total profit. The 
models were solved using heuristic algorithms. 
Durga and Chandrasekaran [34] developed an 
EOQ model of substitutable products under 
discount policy. They also analyzed the role of 
quadratic demand in their model. Table 1 shows 
the characteristics of previous articles in the 
literature at a glance. 
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Tab. 1. A review on the related problems in the literature 
Article  Model type  Product 

substitution 
 Substitution 

way 
 Some other features  EOQ EPQ    

Drezner, et al. [23]       One-way  First EOQ model for substitutable 
products 

Gurnani and Drezner 
[24]       One-way  Multi-product, quality aspects 

Pan, et al. [4]         Statistical process control, 
maintenance 

Wee, et al. [5]         Imperfect items, screening constraint 
Salameh, et al. [26]       Two-way  Partial substitution 

Dash, et al. [6]         Deteriorating items, time value of 
money 

Krommyda, et al. [27]       Two-way  Partial substitution, stock-dependent 
demand 

Maddah, et al. [28]       Two-way  Multi-product, partial substitution 

Al-Salamah [12]         Destructive and non-destructive 
inspection 

Mokhtari, et al. [13]         Perishable product, stock-dependent 
demand, greed search heuristic 

Karmakar, et al. [14]         Carbon emission, time-dependent 
production rate 

Mokhtari [30]       Two-way  Complementary substitutable 
products 

Taleizadeh, et al. [15]         Carbon emission, partial 
backordering 

Shah, et al. [33]       Two-way  Partial substitution, time-dependent 
demand 

Edalatpour and Al-e-
Hashem [31]       Two-way  Non-linear holding cost, pricing 

decisions 
Mokhtari and Rezvan 
[16]         Multi-buyer, multi-product, vendor 

managed inventory 

Fallahi, et al. [17]         Preventive maintenance, multiple 
shipments 

Durga and 
Chandrasekaran [34]       Two-way  Complementary substitutable 

products, discount 

Asadkhani, et al. [18]         Inspection errors, different types of 
imperfect items 

Current paper       Two-way  First EPQ model for substitutable 
products, Scenario analysis  

 
As seen from the above review, all of the 
previous research on substitution is presented 
under the EOQ framework. Hence, in this paper, 
we study a production-inventory control model of 
two substitutable products in EPQ setting, where 
two-way substitution is possible with full and 
one-to-one substitution. To our knowledge, this 
problem has not been treated in literature yet. The 
details of the model will be discussed in 
subsequent sections.  
The rest of the paper is arranged as follows. In 
the next section, notations and assumptions are 

presented. Section 3 discusses the problem 
definition and modeling and develops the 
possible Scenarios. Then, Section 4 presents the 
solution algorithm, and Section 5 presents 
numerical examples. Finally, Section 6 concludes 
the paper. 
 

2. Notations and Assumptions 
Before formulating the proposed model, the 
notations used throughout the paper are 
introduced below. 

  
퐷  The demand rate of product 1 

퐷  The demand rate of product 2 
푃  The production rate of product 1 
푃  The production rate of product 2 
푄  The production quantity of product 1 per cycle 
푄  The production quantity of product 2 per cycle 
퐴  The fixed setup cost of product 1 
퐴  The fixed setup cost of product 2 
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ℎ  The holding cost of product 1 per unit time 
ℎ  The holding cost of product 2 per unit time 
푓  The amount of resources is required for one unit of product 1 
푓  The amount of resources is required for one unit of product 2 
푡  The production cycle of product 1 without substitution 
푡  The consumption cycle of product 1 without substitution 
푡  The production cycle of product 2 without substitution 
푡  The consumption cycle of product 2 without substitution 
푇  The inventory cycle of product 1 without substitution	(푇 = 푡 + 푡 ) 

푇  The inventory cycle of product 2 without substitution	(푇 = 푡 + 푡 ) 
퐼  The initial inventory level of one product when another product runs out of stock (beginning 

of substitution period) 
퐼  The maximum inventory level of one product when another product runs out of stock 

(during of substitution period) 
푡 The time interval in which maximum inventory of product within substitution period is 

consumed completely.  
퐹 The total amount of resource that is available 
푇퐶  The total cost per cycle of product 1 in Scenario 푖 (푖 = 1, 2, 3, 4) 
푇퐶  The total cost per cycle of product 1 in Scenario 푖 (푖 = 1, 2, 3, 4) 
푇퐶푈  The total cost per unit time of product 1 in Scenario 푖 (푖 = 1, 2, 3, 4) 
푇퐶푈  The total cost per unit time of product 1 in Scenario 푖 (푖 = 1, 2, 3, 4) 

  
3. Problem Definition and Modeling 

There is a production-inventory system in a 
manufacturing plant with two products, working 
under EPQ setting. The manufacturer faces 
external demand for products, 퐷  and	퐷 Where 
demands are assumed to be deterministic and 
constant over the planning horizon. The 
manufacturer produces two products via finite 
production rates, 푃  and	푃  to meet the demands 
received from customers. The production-
inventory system follows the basic EPQ model 
where the shortage is not allowed. Moreover, 
there is a finite amount of resources which 
products can use. Figure 1 shows the inventory 
level corresponding to a single product under 

EPQ framework. At every inventory cycle	푇, the 
production is processed until the inventory 
reaches the maximum level 퐼  during 
production cycle	푡 , and then the stored 
inventory is consumed with the demand rate 퐷 
until reaches reach to zero during the 
consumption cycle	푡 . The setup process of 
production incurs a fixed cost denoted by 퐴, and 
the produced inventory can be stored with a 
holding cost per unit time denoted by ℎ. The aim 
is to find the economic production quantity	푄 so 
that the total cost of the inventory system 
involving setup and holding costs is minimized.  

 

 
Fig. 1. The inventory level for a single product under EPQ framework 

 

−퐷 

푇 

푃 
푃 −퐷 

퐼(푡) 

퐼   

푡 

푄 

푡  푡  
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By considering the characteristics of the basic 
EPQ model (shown by Figure 1), the parameters 
of the model are obtained as 푇 = 푄/퐷, 푡 = 푄/
푃, 푡 = 푄/퐷 − 푄/푃, and 퐼 = 푄(1 − 퐷/푃). 
Moreover, the total cost of product involving 
setup and holding costs is calculated as	푇퐶 =
퐴 + ℎ푄 /2퐷(1 − 퐷/푃) and, hence, the optimal 
production policy and the total cost is derived as 
푄∗ = [2퐴퐷/(ℎ(1 − 퐷/푃))] /  and 푇퐶(푄∗) =
[2퐴퐷ℎ(1 − 퐷/푃)] / , respectively. In our EPQ 
model with possible substitution, the products 
can be fully substituted when one product runs 
out of stock. That means if product 1 is depleted, 
then the customers will buy product 2, and vice 
versa. Product substitution occurs within special 
product categories which are inherently similar 
such as laptops, mobile phones and etc. [25]. For 
example, a laptop manufacturer produces two 
laptop models in a similar price range with a few 
differences in technical features. If a laptop 
model is not available, customers can shift to 
another one and vice versa. Product substitution 
has various benefits for the inventory system. It 
enhances the availability of the products and 
results in rapid response to the changes in 
customer demands [30]. In addition, the causes of 
lost sale shortage can be controlled by demand 
substitution in the inventory systems. It is 
assumed that the production of two products is 
started jointly in every inventory cycle, with the 
production quantities	푸ퟏ and	푄 . To analyze the 
problem, a Scenario analysis approach is utilized 
as a soft computing method, which is 
conventional in evaluating engineering problems 
[35-38]. To obtain optimal production quantities, 
푄∗ and 푄∗, four Scenarios are possible in terms 
of situations occur in relationship between		푡 , 

푡 , 푡  and	푡 . That is, when 푡 + 푡 ≤ 푡  
(Scenario I), when 푡 ≤ 푡 + 푡 ≤ 푡 + 푡  
(Scenario II), when 푡 ≤ 푡 + 푡 ≤ 푡 + 푡  
(Scenario III), and when 푡 + 푡 ≤ 푡  (Scenario 
IV). To ensure feasibility, we assume that 
푃 > 퐷 + 퐷  and 푃 > 퐷 + 퐷 , in the proposed 
model. Moreover, the proposed model is 
constructed based on the following assumptions: 

 The production-inventory system 
involves two products 

 The demand rate is deterministic and 
constant  

 The production rate is finite and constant 
 The lead time is assumed to be zero 
 The shortage is not allowed 
 The setup cost is fixed and incurred per 

cycle 
 The holding cost is applied to the units of 

products 
 The substitution is one-to-one between 

products 
 The two-way substitution is possible 

between products 
 The demand of one product can be fully 

substituted by another product 
 
3.1. Scenario I 
In the first Scenario (when 푡 + 푡 ≤ 푡  as 
depicted by Figure 2), product 1 is totally 
consumed within the production cycle of product 
2. At this moment, substitution occurs for product 
1 by product 2. Indeed, the demand of product 1, 
after depletion, is fulfilled from leftover 
inventory of product 2, at the rate 푫ퟏ. This case 
often occurred in manufacturing settings.  

 

 
Fig. 2. The inventory level for Scenario I (푻ퟏ = 풕ퟏ

풑 + 풕ퟏ풅 ≤ 풕ퟐ
풑) 

 
In this Scenario, the total cost of product 1 per 
inventory cycle	푇 = 푡 + 푡  is sum of setup and 
holding costs. As shown by Figure 2, the total 
cost of product 1 per cycle in Scenario I 

(푇퐶 (푄 ,푄 ))	, is similar to the total cost of 
basic EPQ model for product 1, as follows. 
 

푰ퟏ 푰ퟐ 

−푫ퟏ 
푷ퟏ −푫ퟏ 

푷ퟐ −푫ퟐ 

푷ퟐ −푫ퟏ− 푫ퟐ 

−푫ퟏ − 푫ퟐ 

푡  
 

푡  
푇 푡 푡 

퐼(푡) 

−푫ퟐ 
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푇퐶 (푄 , 푄 ) = 퐴 + ℎ
푄
2퐷

1 −
퐷
푃

	 (1) 

 
Moreover, the cost of product 2 includes the 
setup and holding costs. Before calculating the 
total cost of product 2 per cycle in Scenario I 
(푇퐶 (푄 ,푄 )), note that the inventory level of 
product 2 when product 1 runs out of stock is 
퐼 = (푃 − 퐷 )푇 , the maximum inventory level 
of product 2 within the substitution period is 
퐼 = 퐼 + 푡 − 푇 (푃 − 퐷 − 퐷 ) and the time 
interval in which maximum inventory of product 
2 is depleted is 푡 = 퐼 /(퐷 + 퐷 ). By substituting 
the parameters 푇 = 푄 /퐷  and 푡 = 푄 /푃  into 
퐼 , 퐼  and	푡, it yields: 

퐼 = (푃 − 퐷 )푄 /퐷  (2) 

퐼 = 푄 1 −
퐷 + 퐷
푃

+푄  (3) 

푡 =
푄
푃

−
푄
퐷

(푃 − 퐷 −	퐷 )

−
푄 (퐷 − 푃 )

퐷
/(퐷 	

+	퐷 )	 

(4) 

 
The fixed setup cost of product 2 is 퐴 , and the 
inventory holding cost is obtained by calculating 
the area under inventory level of product 2 in 
Figure 2, as follows. 
 

ℎ 	
퐼 푇
2

+
(퐼 + 퐼 )(푡 − 푇 )	

2
+
퐼 푡
2
	  (5) 

 
By substituting the parameters	퐼 , 퐼 , 푡 and	푡  
into the above holding cost and simplifying the 
results, the total cost 푇퐶 (푄 ,푄 ), as the sum of 
setup and holding costs, is written as follows. 
 

푇퐶 (푄 , 푄 ) = 퐴

−	ℎ
퐸
2

−
푄 (퐷 − 푃 )

2퐷
푄
퐷

−
푄
푃

−
퐸

2(퐷 	+	퐷 )

+
푄 (퐷 	−	푃 )

2퐷
 

(6) 

 

 
where 퐸 = (푄 /푃 − 푄 /퐷 )(푃 − 퐷 −	퐷 ) 	−
	푄 /퐷 (퐷 − 푃 ). The total cost of products 1 
and 2 per cycle in Scenario 1 is the sum of the 
total costs of products 1 and 2 per cycle, i.e., 
푇퐶 (푄 ,푄 ) = 푇퐶 + 푇퐶 . Finally, the total 
cost per unit time in Scenario 1, 푇퐶푈 (푄 ,푄 ),	is 
obtained by dividing 푇퐶 (푄 , 푄 ) by the 
inventory cycle 푡 + 푡, as follows: 
 

푇퐶푈 (푄 ,푄 ) = 푇퐶 (푄 ,푄 )/(푡 + 푡) (7) 

 
which yields: 

푇퐶푈 (푄 ,푄 ) = 퐴 	+ 	퐴

−	ℎ
퐸
2

−
푄 (퐷 − 푃 )

2퐷
푄
퐷

−
푄
푃

−
퐸

2(퐷 	+	퐷 )

+
푄 (퐷 	−	푃 )

2퐷

+ ℎ
푄
2퐷

1 −
퐷
푃

/
푄
푃

+
퐸

퐷 	+	퐷
 

(8) 

 
3.2. Scenario II 
In the second Scenario (when 푡 ≤ 푡 + 푡 ≤
푡 + 푡  as depicted by Figure 3), product 1 is 
consumed within the consumption cycle of 
product 2. At this moment, substitution occurs for 
product 1 by product 2, and the demand of 
product 1 is fulfilled from the leftover inventory 
of product 2.  

 
 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

24
-0

7-
16

 ]
 

                             6 / 17

https://www.iust.ac.ir/ijieen/article-1-1016-en.html


7 Economic Production Quantity Under Possible Substitution: A Scenario Analysis Approach 
 

International Journal of Industrial Engineering & Production Research, March 2022, Vol. 33, No. 1 

 
Fig. 3. The inventory level for Scenario II (풕ퟐ

풑 ≤ 푻ퟏ = 풕ퟏ
풑 + 풕ퟏ풅 ≤ 풕ퟐ

풑 + 풕ퟐ풅) 
 
In this Scenario, the total cost of product 1 per 
inventory cycle is similar to the first Scenario, as 
follows. 
 

푇퐶 (푄 , 푄 ) = 퐴 + ℎ
푄
2퐷

1 −
퐷
푃

	 (9) 

 
Moreover, the cost of product 2 includes the 
setup and holding costs. First, note that the 
inventory level of product 2 when product 1 runs 
out of stock is 퐼 = 푄 (1 − 퐷 /푃 ) −
퐷 (푄 /퐷 −푄 /푃 ), and the time interval in 
which 퐼  is depleted is 푡 = 퐼 /(퐷 + 퐷 ).   

The fixed setup cost of product 2 is 퐴 , and the 
inventory holding cost is obtained by calculating 
the area under inventory level of product 2 in 
Figure 3, as follows. 
 

ℎ 	
푄
2퐷

1 −
퐷
푃

−
(푇 − 푇 − 푡)퐼ퟏ

2
	  (10) 

 
By substituting the parameters 퐼 , 푡, 푇  and	푇  
into the above holding cost and simplifying the 
results, the total cost of product 2 is calculated as 
follows. 
 
푇퐶 (푄 , 푄 ) = 퐴 	

+	ℎ 	
퐹
2

퐹
퐷 	+	퐷

−
푄
퐷

+
푄
퐷

+
푄
2퐷

1 −
퐷
푃

	  

(11) 

 

 

where 퐹 = 	퐷 (푄 /퐷 −푄 /푃 ) − 푄 (1 −
퐷 /푃 ). The total cost of products 1 and 2 per 
cycle in Scenario 2 is the sum of the total costs of 
products 1 and 2 per cycle, i.e., 푇퐶 (푄 ,푄 ) =
푇퐶 + 푇퐶 . Finally, the total cost per unit time 
in Scenario 2, 푇퐶푈 (푄 ,푄 ),	is achieved by 
dividing 푇퐶 (푄 ,푄 ) by the inventory cycle 
푇 + 푡, as follows: 
 

푇퐶푈 (푄 ,푄 ) = 	퐴 	+	퐴 	

+	ℎ 	
퐹
2

퐹
퐷 	+ 	퐷

−
푄
퐷

+
푄
퐷

+
푄
2퐷

1 −
퐷
푃

	

+ ℎ
푄
2퐷

1 −
퐷
푃

	

/
푄
퐷

−
퐹

퐷 	+ 	퐷
 

(12) 

 
3.3. Scenario III 
As depicted by Figure 4, the third Scenario 
occurs when 푡 ≤ 푡 + 푡 ≤ 푡 + 푡 , in which 
product 2 is consumed totally within the 
consumption cycle of product 1. At this moment, 
substitution occurs for product 2 by product 1, 
and the demand of product 2 is fulfilled from the 
leftover inventory of product 1.  

 
 

푰ퟏ −푫ퟏ 

퐼(푡) 

푷ퟏ −푫ퟏ 

푷ퟐ −푫ퟐ −푫ퟐ 

−푫ퟏ− 푫ퟐ 

푡 푡  
 

푡  
푇  푡 
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Fig. 4. The inventory level for Scenario III (풕ퟏ

풑 ≤ 푻ퟐ = 풕ퟐ
풑 + 풕ퟐ풅 ≤ 풕ퟏ

풑 + 풕ퟏ풅) 
 
In this Scenario, the total cost of product 2 per 
inventory cycle is similar to that of the basic EPQ 
model: 
 

푇퐶 (푄 , 푄 ) = 퐴 + ℎ
푄
2퐷

1 −
퐷
푃

	 (13) 

 
Moreover, the cost of product 1 includes the 
setup and holding costs. First, note that the 
inventory level of product 1 when product 2 runs 
out of stock is 퐼 = 푄 (1 − 퐷 /푃 ) − 퐷 (푇 −
푡 ), and the time interval in which 퐼  is depleted 
is 푡 = 퐼 /(퐷 + 퐷 ).   
The fixed setup cost of product 1 is 퐴 , and the 
inventory holding cost can be calculated by 
getting the area under inventory level of product 
1 in Figure 4, as follows. 
 

ℎ 	
푄
2퐷

1 −
퐷
푃

−
(푇 − 푇 − 푡)퐼ퟏ

2
	  (14) 

 
By substituting the parameters 퐼 , 푡, 푇  and 푇  
into holding cost and simplifying the results, the 
total cost of product 1 is calculated as follows. 
 
푇퐶 (푄 , 푄 ) = 퐴 	

+	ℎ 	
퐺
2

퐺
퐷 	+	퐷

−
푄
퐷

+
푄
퐷

+
푄
2퐷

1 −
퐷
푃

	  

(15) 

 

 

where 퐺 =	퐷 (푄 /퐷 − 푄 /푃 ) − 푄 (1 −
퐷 /푃 ). The total cost of products 1 and 2 per 
cycle in this Scenario is 푇퐶 (푄 , 푄 ) = 푇퐶 +
푇퐶 . Finally, the total cost per unit time in 
Scenario 3, 푇퐶푈 (푄 ,푄 ),	is computed by 
dividing 푇퐶 (푄 ,푄 ) by the inventory cycle 
푇 + 푡, as follows: 
 

푇퐶푈 (푄 ,푄 ) = 	퐴 	+	퐴 	

+	ℎ 	
퐺
2

퐺
퐷 	+ 	퐷

−
푄
퐷

+
푄
퐷

+
푄
2퐷

1 −
퐷
푃

	

+ ℎ
푄
2퐷

1 −
퐷
푃

	

/
푄
퐷

−
퐺

퐷 	+	퐷
 

(16) 

 
3.4. Scenario IV 
As depicted by Figure 5, in the fourth Scenario 
we have 푡 ≤ 푡 + 푡 ≤ 푡 + 푡 . In this 
Scenario, product 2 is consumed totally within 
the production cycle of product 1. At this 
moment, substitution occurs for product 2 by 
product 1, and the demand of product 2 is 
fulfilled from inventory of product 1.  

 
 

퐼(푡) 

푷ퟏ −푫ퟏ 

푷ퟐ −푫ퟐ −푫ퟐ 

−푫ퟏ 

푡 푡  
 

푡  
푇  푡 

푰ퟏ 
−푫ퟏ − 푫ퟐ 
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Fig. 5. The inventory level for Scenario IV (푻ퟐ = 풕ퟐ

풑 + 풕ퟐ풅 ≤ 풕ퟏ
풑) 

 
In this Scenario, the total cost of product 2 per 
inventory cycle is similar to Scenario III, as 
follows. 
 

푇퐶 (푄 , 푄 ) = 퐴 + ℎ
푄
2퐷

1 −
퐷
푃

	 (17) 

 
To calculate cost of product 1, first, note that the 
inventory level of product 1 when product 2 runs 
out of stock is 퐼 = (푃 − 퐷 )푇 , the maximum 
inventory level of product 1 is 퐼 = 퐼 +
푡 − 푇 (푃 − 퐷 −퐷 ) and the time interval in 

which maximum inventory of product 2, i.e. 퐼 , is 
depleted is 푡 = 퐼 /(퐷 + 퐷 ). By substituting the 
parameters 푇 = 푄 /퐷  and 푡 = 푄 /푃  into I , 
I  and	t, we have: 
 
퐼 = (푃 − 퐷 )푄 /퐷  (18) 

퐼 = 푄 1 −
퐷 + 퐷
푃

+푄  (19) 

푡 =
푄
푃
−
푄
퐷

(푃 − 퐷 −	퐷 )

−
푄 (퐷 − 푃 )

퐷
/(퐷 	

+	퐷 )	 

(20) 

 
The fixed setup cost of product 1 is 퐴 , and the 
inventory holding cost is obtained by calculating 
the area under inventory level in Figure 5, as 
follows. 
 

ℎ 	
퐼 푇
2

+
(퐼 + 퐼 )(푡 − 푇 )	

2
+
퐼 푡
2
	  (21) 

 
By substituting the parameters	퐼 , 퐼 , 푡 and	푡  
into holding cost and simplifying the results, the 
total cost 푇퐶 (푄 ,푄 ) is computed as follows. 
 

푇퐶 (푄 , 푄 ) = 퐴

−	ℎ
퐻
2

−
푄 (퐷 − 푃 )

2퐷
푄
퐷

−
푄
푃

−
퐻

2(퐷 	+	퐷 )

+
푄 (퐷 	−	푃 )

2퐷
 

(22) 

 

 
where	퐻 = (푄 /푃 − 푄 /퐷 )(푃 − 퐷 −	퐷 	) −
푄 (퐷 − 푃 	)/퐷 . The total cost of products 1 
and 2 per cycle in Scenario 1 is 푇퐶 (푄 ,푄 ) =
푇퐶 + 푇퐶 . Finally, the total cost per unit time, 
푇퐶푈 (푄 ,푄 ),	is gained by dividing 푇퐶 (푄 , 푄 ) 
by the inventory cycle 푡 + 푡, as follows: 
 

푇퐶푈 (푄 ,푄 ) = 	퐴 	+	퐴

−	ℎ
퐻
2

−
푄 (퐷 − 푃 )

2퐷
푄
퐷

−
푄
푃

−
퐻

2(퐷 	+	퐷 )

+
푄 (퐷 	−	푃 )

2퐷

+ ℎ
푄
2퐷

1 −
퐷
푃

/
푄
푃
+

퐻
퐷 	+	퐷

 

(23) 

 
4. Solution Algorithm 

In this section, we are going to find the optimal 
production policy, including the economic 
production quantities, the optimal inventory 
intervals, and the optimized total cost, by 
considering all Scenarios discussed earlier. The 
derived total costs per unit time will be used to 
determine the solution. To this end, we first 

푡 

−푫ퟏ − 푫ퟐ 푰ퟏ 푰ퟐ 

−푫ퟏ 

푷ퟏ−푫ퟏ − 푫ퟐ 

−푫ퟐ 푷ퟐ −푫ퟐ 

푷ퟏ −푫ퟏ 

퐼(푡) 

푡  
푇  

푡  
 

푡 
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derive the conditions of Scenarios in terms of 
decision variables, i.e.,	(푄 , 푄 ), as linear 
constraints in optimization models, as follows. 
 
Scenario I: 푡 + 푡 ≤ 푡   ∼ 푄 /퐷 ≤ 푄 /푃  
Scenario II: 푡 ≤ 푡 + 푡 ≤ 푡 + 푡   ∼ 
(푄 /푃 ≤ 푄 /퐷 )	&	(푄 /퐷 ≤ 푄 /퐷 ) 
Scenario III: 푡 ≤ 푡 + 푡 ≤ 푡 + 푡   ∼ (푄 /
푃 ≤ 푄 /퐷 )	&	(푄 /퐷 ≤ 푄 /퐷 ) 
Scenario IV: 푡 + 푡 ≤ 푡   ∼ 푄 /퐷 ≤ 푄 /푃  
 
Moreover, the following constraint ensures the 
required amount of resources does not violate the 
total amount of available resources.  
 

푓 푄 + 푓 푄 ≤ 퐹 (24) 

 
So, the optimal production policy can be found 
by the following algorithm.  
 

Step 1: Solve the constrained optimization 
problem for Scenario I as follows: 
푀푖푛 	푇퐶푈 (푄 , 푄 ) 
Subject to: 
푄 /퐷 ≤ 푄 /푃  
푓 푄 + 푓 푄 ≤ 퐹 
푄 ,푄 ≥ 0 
 
And set the optimal solution of this problem as 
(푄∗ , 푄∗ ). 
Step 2: Solve the constrained optimization 
problem for Scenario II as follows: 
푀푖푛 	푇퐶푈 (푄 , 푄 ) 
Subject to: 
푄 /푃 ≤ 푄 /퐷  
푄 /퐷 ≤ 푄 /퐷  
푓 푄 + 푓 푄 ≤ 퐹 
푄 ,푄 ≥ 0 
 
 

And set the optimal solution of this problem as 
(푄∗ , 푄∗ ). 
Step 3: Solve the constrained optimization 
problem for Scenario III as follows: 
푀푖푛 	푇퐶푈 (푄 , 푄 ) 
Subject to: 
푄 /푃 ≤ 푄 /퐷  
푄 /퐷 ≤ 푄 /퐷  
푓 푄 + 푓 푄 ≤ 퐹 

푄 ,푄 ≥ 0 
 

 
And set the optimal solution of this problem as 
(푄∗ , 푄∗ ). 
Step 4: Solve the constrained optimization 
problem for Scenario IV as follows: 
푀푖푛 	푇퐶푈 (푄 , 푄 ) 
Subject to: 
푄 /퐷 ≤ 푄 /푃  
푓 푄 + 푓 푄 ≤ 퐹 
푄 ,푄 ≥ 0 
 

 
And set the optimal solution of this problem as 
(푄∗ , 푄∗ ). 
Step 5: Find the minimum total cost obtained in 
Steps 1-4, 

min	
푇퐶푈 (푄∗ , 푄∗ ), 푇퐶푈 (푄∗ , 푄∗ ), 푇퐶푈

(푄∗ , 푄∗ ), 푇퐶푈 (푄∗ , 푄∗ ) , 

and introduce the corresponding solution as the 
optimal solution of the problem	(푄∗, 푄∗).  
 

5. Computational Results 
In this section, two numerical examples are 
solved to illustrate the performance of models. In 
addition, to investigate the inventory system's 
behavior, sensitivity analysis is performed for the 
first numerical example. Finally, some 
managerial insights are discussed to provide 
better insights for decision-makers. 
 
5.1. Numerical examples  
In order to illustrate the application and 
performance of the proposed model, we present 
and discuss two numerical examples in this 
section. In the first example, consider a 
manufacturer which produces two products with 
independent external demands. Two-way 
substitution is possible between products. 
Moreover, the demand for one product can be 
fully substituted by another product. One unit of 
a product is substituted with one unit of another 
product when shortage is occurred (one-to-one 
substitution). There is a finite amount of 
resource, e.g., space, money and labor, 퐹 = 400, 
which can be used by products. The 
characteristics of these products, including the 
production and demand rates, the production 
setup costs, and the inventory holding costs, are 
presented in Table 2.  
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Tab. 2. The characteristics of first numerical example 

Parameters Product 1 Product 2 

Demand rate 150 250 

Production rate 450 550 

Setup cost 20 15 

Holding cost 2 4 

Resource usage 1 2 
 
To solve this example, we implement the solution 
algorithm presented in the previous section. First, 
we solve all constrained optimization problems in 
Steps 1-4 of the algorithm. To this end, we 
utilized commercial solver Lingo. The following 
results are achieved: 
Scenario I results: 푄∗ = 0.00,			푄∗ =
160.21,			푇퐶푈 = 174.7726 
Scenario II results:	푄∗ = 45.97,			푄∗ =
76.61,			푇퐶푈 = 228.4334 
Scenario III results: 푄∗ = 45.97,			푄∗ =
76.61,			푇퐶푈 = 228.4334 
Scenario IV results: 푄∗ = 354.96,			푄∗ =
0.00,			푇퐶푈 = 78.8811 
 

According to the above results, the minimum 
total cost is 
푇퐶푈∗ =
min 	{174.7726, 228.4334, 228.4334, 78.8811} =78.8811, 
which is related to the Scenario IV whose optimal 
production quantities are 푄∗ = 354.96,			푄∗ =
0.00. That means the demand of both products is 
satisfied by the inventory of product 1. As can be 
seen, the second and third Scenarios yield the 
same results. This is a general observation which 
is due to the similar structure of these Scenarios. 
Corresponding to this optimal quantities, the 
optimal inventory intervals are obtained as 
푡 = 푄∗/푃 = 0.789, 푡 = 푄∗/푃 = 00.00, 
푇 = 푄∗/퐷 = 2.366, 푇 = 푄∗/퐷 = 00.00. 

In order to investigate the superiority of the 
proposed problem under substitution against the 
basic model, we compare the results under 
substitution with the results of the production 
problem without substitution. For this purpose, 
the formula of the basic EPQ is employed, which 
lead to 푄 = [2퐴 퐷 /(ℎ (1 − 퐷 /푃 ))] / =
67.08, and 푄 = [2퐴 퐷 /(ℎ (1 − 퐷 /
푃 ))] / = 58.63. This is a feasible solution, 
since 푓 푄 + 푓 푄 = 1 ∗ 67.08 + 2 ∗ 58.63 =
185.34 ≰ 400. This solution incurs the total cost  
푇퐶푈(푄 , 푄 ) = 퐴 푄 /퐷 + ℎ 푄 (1− 퐷 /푃 )/
2 + 퐴 푄 /퐷 + ℎ 푄 (1 − 퐷 /푃 )/2 =
259.8794. As it is obvious, by using the 
substitution policy, total cost reduces from 
259.8794 to 151.1111, which shows 71.98% 
improvement.  
In the second example, we consider a 
manufacturer with two substitutable products 
where substitution is assumed to be two-way, 
one-to-one, and fully possible between products. 
There is a finite amount of resource 퐹 = 200. 
The characteristics of the products of this 
example is presented in Table 3. To solve this 
example, we solve all constrained optimization 
problems in Steps 1-4 of the algorithm. The 
following results are obtained. 

 
Tab. 3. The characteristics of second numerical example 

Parameters Product 1 Product 2 

Demand rate 400 200 

Production rate 800 1000 

Setup cost 40 60 

Holding cost 10 15 

Resource usage 5 3 
 
Scenario I results: 푄∗ = 0.00,			푄∗ =
66.67,			푇퐶푈 = 1100.000 

Scenario II results:	푄∗ = 30.77,			푄∗ =
15.38,			푇퐶푈 = 1469.231 
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Scenario III results: 푄∗ = 30.77,			푄∗ =
15.38,			푇퐶푈 = 1469.231 
Scenario IV results: 푄∗ = 34.78,			푄∗ =
8.70,			푇퐶푈 = 1498.261 
 

According to the obtained results, the minimum 
total cost is 
푇퐶푈∗ =
min 	{1100.000, 1469.231, 1469.231, 1498.261} = 1100.000 
which is related to the Scenario I, whose optimal 
production quantities are 푄∗ = 0.00,			푄∗ =
66.67. That means the demand of both products 
is satisfied by the inventory of product 2. The 
optimal inventory intervals are also obtained as 
푡 = 푄∗/푃 = 0.00, 푡 = 푄∗/푃 = 0.08, 
푇 = 푄∗/퐷 = 0.00, 푇 = 푄∗/퐷 = 0.33. 
In addition, we compare the results under 
substitution with the results of the production 
problem without substitution. The basic EPQ 
leads to 푄 = [2퐴 퐷 /(ℎ (1 − 퐷 /푃 ))] / =
80.00, and 푄 = [2퐴 퐷 /(ℎ (1 − 퐷 /
푃 ))] / = 44.72. However, this is not a feasible 
solution, since 푓 푄 + 푓 푄 = 5 ∗ 80.00+ 3 ∗
44.72 = 534.16 ≰ 200. To ensure feasibility, 
we use Lagrangian relaxation as a conventional 
approach in such cases. To do so, the Lagrangian 
total cost is obtained by adding resource 
constraint 푓 푄 + 푓 푄 − 퐹 with Lagrange 
multiplier	휃 into the original total cost as follows.  
 

퐿푅(푄 , 푄 , 휃) = 	
퐴 푄
퐷

+
ℎ 푄
2

1 −
퐷
푃

+
퐴 푄
퐷

+
ℎ 푄
2

1 −
퐷
푃

+ 휃(푓 푄 + 푓 푄 − 퐹	) 
 
By setting derivatives of 퐿푅(푄 ,푄 , 휃) with 
respect to 푄 ,푄  and 휃, to zero, the following 
equations are achieved. 
 

푄 =
2퐴 퐷

(ℎ + 2휃푓 )(1 − 퐷 /푃 ) ,				푄

=
2퐴 퐷

(ℎ + 2휃푓 )(1 − 퐷 /푃 ) 	 

And 
 

푓
2퐴 퐷

(ℎ + 2휃푓 )(1 − 퐷 /푃 )

+ 푓
2퐴 퐷

(ℎ + 2휃푓 )(1 − 퐷 /푃 )
= 퐹 

 

By solving the above system of equations, the 
feasible solution is achieved as 푄∗ = 23.72 and 
푄∗ = 27.14. This solution incurs the total cost  
푇퐶푈(푄 , 푄 ) = 퐴 푄 /퐷 + ℎ 푄 (1− 퐷 /푃 )/
2 + 퐴 푄 /퐷 + ℎ 푄 (1 − 퐷 /푃 )/2 =
1338.928. Obviously, using the substitution 
policy, total cost reduces from 1338.928 to 
1100.000, which shows a relatively high cost-
saving value (21.72% improvement).  
 
5.2. Sensitivity analysis 
In the real-world situation, the changes in 
inventory systems' input parameters are 
inevitable, and the parameters fluctuate. These 
changes in the input parameters can significantly 
impact the decision variables and the objective 
function of the problem. Sensitivity analysis is a 
systematic approach to studying the impact of 
parameter fluctuation on the optimal decision of 
models. In this section, for the first numerical 
example, we analyze the impact of changes in 
total demand 퐷  and 퐷 , setup cost 퐴  and 퐴 , 
and inventory holding cost ℎ  and ℎ  on 
economic production quantity and the system's 
total cost. The results are provided in Table 4-6. 
In addition, Figure 6-8 shows the sensitivity of 
the objective function to the parameters 
schematically.  
As reported in Table 3 and Figure 6, if the 
demand for products 퐷  and 퐷  is increased, the 
total cost of the system is decreased, and the 
increasment in parameters have a positive impact 
on 푇퐶푈∗. 

 
Tab. 4. The sensitivity of 푻푪푼∗ due to change in demand rates 

%Change in 퐷  푄∗ 푄∗ 푇퐶푈∗ %Change in 퐷  푄∗ 푄∗ 푇퐶푈∗ 
−30 242.60 0.00 102.431 −30 202.361 0.00 112.422 
−20 269.89 0.00 95.962 −20 234.787 0.00 104.349 
−10 305.43 0.00 88.235 −10 280.624 0.00 93.541 
0 355.00 0.00 78.8811 0 354.96 0.00 78.8811 

+10 400.00 0.00 67.423 +10 400.00 0.00 59.409 
+20 400.00 0.00 55.402 +20 400.00 0.00 39.375 
+30 400.00 0.00 43.381 +30 400.00 0.00 19.340 
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Fig. 6. The impact of 푫ퟏ and 푫ퟐ on 푻푪푼∗ 

 
Moreover, the provided results in Table 5 and 
Figure 7 confirm that the increase in setup cost 

퐴  and 퐴   affect the total cost negatively, where 
퐴  is more impactful than 퐴 . 

  
Tab. 5. The sensitivity of 푻푪푼∗ due to setup costs 

%Change in 퐴  푄∗ 푄∗ 푇퐶푈∗  %Change in 퐴  푄∗ 푄∗ 푇퐶푈∗ 
−30 323.110 0.00 71.802  −30 331.361 0.00 73.636 
−20 334.066 0.00 74.236  −20 339.411 0.00 75.425 
−10 344.674 0.00 76.594  −10 347.275 0.00 77.172 
0 355.00 0.00 78.881  0 354.96 0.00 78.881 

+10 364.966 0.00 81.103  +10 362.491 0.00 80.554 
+20 374.700 0.00 83.267  +20 369.865 0.00 82.192 
+30 384.187 0.00 85.374  +30 377.094 0.00 83.799 

 

 
Fig. 7. The impact of 푨ퟏ and 푨ퟐ on 푻푪푼∗ 

 
Finally, the inventory holding cost ℎ  and ℎ  is 
addressed in the sensitivity analysis. Similar to 
the setup cost, increasing the holding cost of 
product 1 imposes more costs on the inventory 

system. Interestingly, the holding cost of product 
2 has no impact on 푇퐶푈∗. Table 6 And Figure 8 
illustrate these results better. 
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Tab. 6. The sensitivity of 푻푪푼∗ due to holding cost 
%Change in ℎ  푄∗ 푄∗ 푇퐶푈∗  %Change in ℎ  푄∗ 푄∗ 푇퐶푈∗ 

−30 400.00 0.00 66.111  −30 354.96 0.00 78.881 
−20 396.86 0.00 70.553  −20 354.96 0.00 78.881 
−10 374.17 0.00 74.833  −10 354.96 0.00 78.881 
0 355.00 0.00 78.881  0 354.96 0.00 78.881 

+10 338.45 0.00 82.731  +10 354.96 0.00 78.881 
+20 324.04 0.00 86.410  +20 354.96 0.00 78.881 
+30 311.32 0.00 89.938  +30 354.96 0.00 78.881 

 

 
Fig. 8. The impact of 풉ퟏ and 풉ퟐ on 푻푪푼∗ 

 
5.3. Managerial insights 

Although several extensions of the traditional 
EPQ model are discussed in the literature, the 
current work is a new research line for 
production-inventory researches. In many multi-
product manufacturing systems, a joint 
production policy is established for different 
types of items. However, this approach may not 
be cost-effective for substitutable products. The 
currently developed model helps the managers to 
create flexibility for the inventory cycle of two-
substitutable items and enhance the classic 
inventory models. The utilized Scenario analysis 
approach can investigate the possible outcomes 
and provide a framework for optimal decision 
making. The comparison of the new inventory 
model with traditional EPQ shows significant 
cost improvements in two numerical examples. 
Based on the sensitivity analysis, the optimal 
total cost of the proposed inventory system is 
highly sensitive to the demand rate of products, 
especially the second product. Hence, it is highly 
recommended to predict and monitor the 
parameter efficiently. Moreover, the impact of 
product 1 holding cost is more than the setup cost 
of both products. 

6. Conclusions 
This paper proposed a production-inventory 
system where a manufacturing plant with two 
products is working under EPQ setting with 
possible substitution. To satisfy the external 
demand for products, the manufacturer produces 
the products via finite production rates. The 
shortage is not allowed, and there is a finite 
amount of resources that products can use. The 
production setup process incurs a fixed cost, and 
the produced inventory can be stored with a 
holding cost per unit time. The aim is to find the 
economic production quantities to minimize the 
total cost of the inventory system involving setup 
and holding costs. To analyze the problem, the 
Scenario analysis as a process of analyzing 
possible outcomes was proposed. To this end, 
four special Scenarios were derived, and then a 
solution procedure was suggested based on the 
Scenarios developed. Two numerical examples 
were presented and solved via analyzing 
developed Scenarios. The results were compared 
with the results obtained by basic EPQ (without 
substitution). To this end, the Lagrangian 
relaxation was employed to handle the resource 
constraint. The comparisons show that the 
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production model under substitution can 
significantly save costs as opposed to the 
traditional model. The sensitivity analysis is also 
performed for some parameters, and the results 
revealed that the optimal solution is highly 
sensitive to the demand of products. Developing 
the current model in a multi-echelon supply chain 
framework is an interesting suggestion for the 
feature researches. In addition, a sustainable 
extension of the model can be provided by 
considering some carbon emission regulations 
such as carbon tax and cap-and-trade. 
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